

AL-FARABI KAZAKH NATIONAL UNIVERSITY  
FACULTY OF MEDICINE AND PUBLIC HEALTH  
DEPARTMENT OF EPIDEMIOLOGY, BIOSTATISTICS AND  
EVIDENCE-BASED MEDICINE

GUIDELINE FOR SEMINARS ON PATIENT AND SOCIETY  
COURSE

**COMPOSER:**  
**FA.Iskakova, Associate Professor**

**Almaty, 2025**

# MODULE 1: INTRODUCTION TO EPIDEMIOLOGY AND EVIDENCE-BASED MEDICINE

## Seminar 1: Foundations of Epidemiology

**Learning Objective:** Define epidemiology, its core purposes (assessment, etiology, evaluation), and distinguish between descriptive and analytical approaches.

**Key Concepts:** History of epidemiology, population vs. individual perspective, measures of occurrence (introduction to incidence/prevalence), natural history of disease.

**Practical Application:** Analyze a brief outbreak report to formulate descriptive epidemiological questions (Who? Where? When?).

## Seminar 2: Epidemiological Study Design

**Learning Objective:** Classify, compare, and select appropriate observational (cohort, case-control, cross-sectional) and experimental study designs.

**Key Concepts:** 2x2 contingency table, measures of association (RR, OR), internal vs. external validity, confounding, bias.

**Practical Application:** Given a series of research questions, match each to the optimal study design and justify the choice.

## Seminar 3: Communicable & Non-Communicable Disease Epidemiology

**Learning Objective:** Contrast the epidemiological principles, dynamics, and prevention strategies for communicable and non-communicable diseases (NCDs).

**Key Concepts:** Chain of infection, Ro (reproduction number), herd immunity vs. multifactorial causation, risk factors, and population-level prevention for NCDs.

**Practical Application:** Case study comparison: Develop a containment strategy for an influenza outbreak vs. a population-level intervention plan for diabetes prevention.

## Seminar 4: Evidence-Based Medicine (EBM) - The 5-Stage Cycle

**Learning Objective:** Apply the 5-step EBM process (Ask, Acquire, Appraise, Apply, Assess) to a clinical/public health question.

**Key Concepts:** Formulating PICO/PECO questions, efficient database searching (PubMed/MeSH), principles of critical appraisal for validity and relevance.

**Practical Application:** Workshop: From a clinical scenario, create a PICO question, execute a structured literature search, and appraise the abstract of a retrieved article.

## Seminar 5: Systematic Reviews, Meta-Analysis & GRADE

**Learning Objective:** Describe the methodology of systematic reviews and meta-analyses and interpret results using the GRADE framework.

**Key Concepts:** Hierarchy of evidence, forest plots, heterogeneity ( $I^2$ ), assessing certainty of evidence (GRADE: Risk of bias, inconsistency, indirectness, imprecision, publication bias).

**Practical Application:** Critically evaluate the methods and results section of a published systematic review, focusing on the quality of evidence (GRADE) for a key recommendation.

## MODULE 2: INTRODUCTION TO BIOSTATISTICS

### Seminar 6: Research Proposal & Questionnaire Design

**Learning Objective:** Outline the core components of a research proposal and design a valid, reliable data collection questionnaire.

**Key Concepts:** Study rationale/aims, methodology outline, ethical considerations, question types (open/closed, Likert), piloting, reliability (test-retest, internal consistency).

**Practical Application:** In groups, draft the methods section of a proposal and design a short questionnaire on a chosen public health topic, then peer-review for clarity and bias.

### Seminar 7: Measurement in Epidemiology: Frequencies, Rates, Ratios

**Learning Objective:** Calculate and interpret key epidemiological measures of disease frequency and association.

**Key Concepts:** Prevalence (point/period), incidence (cumulative, density), mortality, morbidity, risk ratio (RR), odds ratio (OR), rate ratio.

**Practical Application:** Using data from a cohort study table, calculate and interpret incidence risk, prevalence, and relative risk.

### Seminar 8: Summarizing Data - Distributions & Descriptive Statistics

**Learning Objective:** Organize data into frequency distributions and compute measures of central tendency and dispersion.

**Key Concepts:** Frequency tables, histograms, mean, median, mode, range, interquartile range (IQR), variance, standard deviation (SD).

**Practical Application:** Given a dataset of patient blood pressures, create a frequency distribution, histogram, and calculate and interpret the mean, median, and standard deviation.

## Seminar 9: Statistical Inference: Hypothesis Testing, p-value, CI

**Learning Objective:** Formulate statistical hypotheses and interpret the p-value and confidence interval in the context of research.

**Key Concepts:** Null ( $H_0$ ) and alternative ( $H_1$ ) hypotheses, Type I/II error, statistical significance, point estimate, confidence interval (CI) calculation and interpretation.

**Practical Application:** Interpret the results from a published study (e.g., "p=0.03, RR=1.8, 95% CI 1.1-2.9") in plain language, discussing significance, effect size, and precision.

## Seminar 10: Descriptive Statistics & Databases (Excel/SPSS)

**Learning Objective:** Perform basic data management and generate descriptive statistics using statistical software.

**Key Concepts:** Data entry, coding, cleaning, variable types (nominal, ordinal, continuous), using software to generate tables, summary statistics, and simple graphs.

**Practical Application:** Hands-on lab: Input a provided dataset into Excel/SPSS, clean the data, define variable types, and produce a descriptive summary report with appropriate tables and charts.

## MODULE 3: CONSTRUCTION OF A RESEARCH PROPOSAL

### Seminar 11: Analyzing Categorical Data - Chi-square & Related Tests

**Learning Objective:** Select and apply the correct statistical test for comparing categorical (qualitative) variables.

**Key Concepts:** Chi-square test (assumptions, formula), Fisher's exact test (for small samples), McNemar's test (for paired/matched data).

**Practical Application:** Using SPSS and a provided dataset, test for an association between two categorical variables (e.g., smoking status and disease presence) and interpret the output.

### Seminar 12: Parametric Tests: t-tests & ANOVA

**Learning Objective:** Apply t-tests and ANOVA to compare means between groups, checking for necessary assumptions.

**Key Concepts:** Independent samples t-test, paired t-test, one-way ANOVA, assumptions of normality and homogeneity of variance, post-hoc tests.

**Practical Application:** SPSS lab: Test for differences in mean blood pressure between three treatment groups using ANOVA, check assumptions, and interpret the results.

## Seminar 13: Non-Parametric Tests

**Learning Objective:** Choose and implement non-parametric alternatives when data violate parametric test assumptions.

**Key Concepts:** Mann-Whitney U test (the independent samples t-test), Wilcoxon signed-rank test (the paired samples t-test), Kruskal-Wallis test (ANOVA).

**Practical Application:** Given a non-normally distributed dataset, use SPSS to compare groups using the appropriate non-parametric test and compare the conclusions to a parametric approach.

## Seminar 14: Correlation, Regression & Survival Analysis

**Learning Objective:** Analyze relationships between variables using correlation/regression and analyze time-to-event data.

**Key Concepts:** Pearson's (r) and Spearman's (ρ) correlation, simple linear regression, Kaplan-Meier curves, log-rank test.

**Practical Application:** 1) Calculate and interpret a correlation coefficient in SPSS. 2) Interpret a Kaplan-Meier survival curve and log-rank test result from a clinical trial output.

## Seminar 15: Presentation of Scientific Projects

**Learning Objective:** Effectively communicate research findings in a structured scientific presentation.

**Key Concepts:** Structure of a scientific report/paper (IMRaD), principles of effective data visualization (graphs, tables), oral presentation skills, abstract writing.

**Practical Application:** Final Capstone: Students present their completed research proposals (developed throughout the seminars), incorporating background, methodology, proposed analysis plan, and expected significance. Peer feedback session.

### Reference:

1. Gordis. Epidemiology 5th Edition, W.B. Saunders Company, 2013.
2. High-Yield Biostatistics, Epidemiology, & Public Health, 4th Edition, Kaplan USMLE, Lecture Notes, Behavioral Sciences and Social Science, 2017.-229p.
3. Fundamentals of Biostatistics. Seventh Edition. Rosner. - 2016.-856 p.
4. Primer of Biostatistics. Seventh Edition. Stanton A. Glantz, Ph.D., 2009, 297p.
5. Medical Statistics at a Glance Workbook. Front Cover. Aviva Petrie, Caroline Sabin. John Wiley & Sons, 2013 - Medical - 120 p.
6. Evidence-Based Medicine. How to Practice and Teach EBM (3rd Edition). S.E. Straus, W.S. Richardson, Paul Glasziou, R. Brian Haynes.

7. Literature Reviews in Social Work. Robin Kiteley and Christine Stogdon - 2014.-20 p. Additional literature
8. Evidence-Based Answers to Clinical Questions for Busy Clinicians Workbook - 2009.- 26p.
9. Appraisal of Guidelines for Research & Evaluation II. The AGREE Next Steps Consortium May 2009.- 52 p.